Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
5601
-
5602
Average kidney and heart weight of rats.
Published 2024“…Dose-dependent experiments showed that COE (1 and 2μg/ml) induced a significant increase of phospho-(S473)-AKT along with a decrease in phospho (T180 + Y182) P38 levels.…”
-
5603
-
5604
-
5605
A schematic view of ACS.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5606
Assumed conditions.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5607
Shows the amount of emission reductions.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5608
Comparison COP of our study with Florides et al.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5609
Effect of generator temperature on COP.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5610
Emission factors.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5611
Magnitude of emission reduction.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5612
Assumed conditions.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5613
Fixed simulation data.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5614
pone.0324800.t002 -
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5615
Impact of heat exchanger effectiveness on COP.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5616
Assumed conditions.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5617
Assumed conditions.
Published 2025“…The results show a COP of 0.79 with a cooling capacity of 5 kW at generator, condenser, evaporator, and absorber temperatures of (90, 40, 10, and 35), respectively. The COP increases as the evaporator temperature increases, and it decreases as the condenser and absorber temperature increases. …”
-
5618
-
5619
PRISMA flow chart.
Published 2025“…However, there was a decrease in stigma resistance (n = 318; <i>d</i>, 95% CI = -0.13, -0.36 to 0.10). …”
-
5620
Characteristics of included studies.
Published 2025“…However, there was a decrease in stigma resistance (n = 318; <i>d</i>, 95% CI = -0.13, -0.36 to 0.10). …”