Search alternatives:
significant linear » significant clinical (Expand Search), significant gender (Expand Search), significant level (Expand Search)
linear decrease » linear increase (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significant linear » significant clinical (Expand Search), significant gender (Expand Search), significant level (Expand Search)
linear decrease » linear increase (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
21
Study flow chart.
Published 2025“…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …”
-
22
Study CONSORT diagram.
Published 2025“…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …”
-
23
Mean parameter values for the selected crops.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
24
-
25
Detailed information of the observation datasets.
Published 2025“…On longer time scales (6–24 hours), the score and correlation between ERA5 and observations further increased, while the centered root-mean-square error (CRMSE) and standard deviation decrease. 4) Hourly wind data with a regular spatial distribution in ERA5 reanalysis provides valuable information for further detailed research on meteorology or renewable energy perspectives, but some inherent shortcomings should be considered.…”
-
26
General technical specification for GW154/6700.
Published 2025“…On longer time scales (6–24 hours), the score and correlation between ERA5 and observations further increased, while the centered root-mean-square error (CRMSE) and standard deviation decrease. 4) Hourly wind data with a regular spatial distribution in ERA5 reanalysis provides valuable information for further detailed research on meteorology or renewable energy perspectives, but some inherent shortcomings should be considered.…”
-
27
Flowchart of the study population.
Published 2025“…Among those 803 individuals who did not take antihypertensive medication, there was a significant association in linear regression between increase in PSS-10 and decrease in C2 (B: −0.2, 95% CI: −0.4- −0.02; p = 0.03) that was lost after adjustment for physical activity (B: −0.16, 95% CI: −0.35–0.03; p = 0.1). …”
-
28
Characteristics of study population.
Published 2025“…Among those 803 individuals who did not take antihypertensive medication, there was a significant association in linear regression between increase in PSS-10 and decrease in C2 (B: −0.2, 95% CI: −0.4- −0.02; p = 0.03) that was lost after adjustment for physical activity (B: −0.16, 95% CI: −0.35–0.03; p = 0.1). …”
-
29
Predictors in ordinal regression model for GDS.
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
30
Classification of hand grip strength.
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
31
Rating scale for functional severity [28].
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
32
Regression model coefficients.
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
33
ICOPE screening positive participant’s responses.
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
34
WHO BMI classification for adults.
Published 2025“…Conversely in a linear regression model, depression (<i>B</i> = -2.01, <i>p</i> = .004) and physical activity (<i>B</i> = -.001, <i>p</i> = .008) were predictors for decreases in BMI.…”
-
35
-
36
Performance comparison of ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
37
Comparative data of different soil samples.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
38
Confusion matrix of random forest model.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
39
Sensor value scenario for fuzzy logic algorithm.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
40
Evaluation metrics of selected ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”