Showing 8,241 - 8,260 results of 21,342 for search '(( significantly ((nn decrease) OR (a decrease)) ) OR ( significant decrease decrease ))', query time: 0.83s Refine Results
  1. 8241

    Gait retraining with biofeedback. by Fateme Khorramroo (18086501)

    Published 2025
    “…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
  2. 8242

    Coordination angle during walking. by Fateme Khorramroo (18086501)

    Published 2025
    “…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
  3. 8243

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  4. 8244

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  5. 8245

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  6. 8246

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  7. 8247

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  8. 8248

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  9. 8249

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  10. 8250

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  11. 8251

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  12. 8252

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  13. 8253

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  14. 8254

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  15. 8255

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  16. 8256

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  17. 8257

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  18. 8258

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  19. 8259

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  20. 8260

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”