يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '(( significantly ((nn decrease) OR (a decrease)) ) OR ( significant factor decrease ))~', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses حسب Jing Wang (6206297)

    منشور في 2025
    "…However, how global land use changes impact soil N supply and potential N loss remains elusive. By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …"
  2. 2

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  3. 3

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  4. 4

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  5. 5

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  6. 6

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  7. 7

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  8. 8

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  9. 9

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  10. 10

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  11. 11

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  12. 12

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  13. 13

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  14. 14

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  15. 15

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  16. 16

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces حسب Guangchao Han (1453198)

    منشور في 2025
    "…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
  17. 17
  18. 18

    Data Sheet 1_Sex differences in the reactivity of gastric myoelectrical activity and heart rate variability as putative psychophysiological markers in human pain research.docx حسب Rossitza Draganova (9154951)

    منشور في 2024
    "…</p>Results<p>Acute pain induced significant instability in EGG slow-wave frequency and amplitude, increased tachygastria, and decreased normogastric spectral power, without evidence of sex differences. …"