Showing 4,641 - 4,660 results of 21,342 for search '(( significantly ((nn decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', query time: 0.43s Refine Results
  1. 4641

    Univariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  2. 4642

    Overview of individuals in the study. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  3. 4643

    Multivariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  4. 4644
  5. 4645

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  6. 4646

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  7. 4647

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  8. 4648

    S1 File - by Ingmar Lundquist (46422)

    Published 2025
    “…Additionally, the significance of extracellular NO on GSIS was studied. …”
  9. 4649
  10. 4650
  11. 4651
  12. 4652

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  13. 4653

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  14. 4654

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  15. 4655

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  16. 4656

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  17. 4657

    Amplitude for A/L = 0.02. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  18. 4658

    Graph for maximum Frequency at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  19. 4659

    Graph for maximum Power at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  20. 4660

    Amplitude for A/L = 0.03. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”