Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
9121
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9122
Strain-stress maps of vertical pile foundation.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9123
Displacement-inclination variation graph.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9124
Soil modeling and mechanical parameters.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9125
Location of monitored piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9126
Axial force in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9127
Pile-soil interaction.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9128
Bending moment in the tension zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9129
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9130
Sketch of forces on vertical and inclined piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9131
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9132
Displacement cloud maps.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9133
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9134
Morphing mesh.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9135
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9136
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9137
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
9138
Bending moment in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9139
Axial forces in the tension zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
9140
VPF and VIPF.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”