Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
6501
Placement on the forehead.
Published 2025“…Post hoc analysis demonstrated significantly decreased HbO₂ in both the IMW (<i>p</i> = 0.019) and placebo (<i>p</i> = 0.035) groups relative to blank controls. …”
-
6502
IMW intervention plan design.
Published 2025“…Post hoc analysis demonstrated significantly decreased HbO₂ in both the IMW (<i>p</i> = 0.019) and placebo (<i>p</i> = 0.035) groups relative to blank controls. …”
-
6503
Test scheme.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6504
Basic physical properties of the soil samples.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6505
Schematic diagram of WSM test simulator.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6506
Contents of ions in the soil samples.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6507
Test device for WSM.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6508
Supporting data.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6509
Flow chart of the sample preparation process.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6510
Particle size curve.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6511
Compaction curve.
Published 2025“…At the end of the freeze-thaw cycle (FTC), the deformation of the saline soil increased with the decrease of the cold end temperature, and the alternating time between heat and cold did not produce significant changes in the deformation of the saline soil. …”
-
6512
-
6513
-
6514
Data used to generate Fig 1.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6515
Data used to generate Table 6.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6516
Data used to generate Table 2.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6517
Data used to generate Fig 3.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6518
Data used to generate Fig 5.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6519
Data used to generate Fig 2.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”
-
6520
Data used to generate Fig 6.
Published 2025“…For wild-type <i>Ae. aegypti</i>, X-ray irradiation at the doses from 3 Gy decreased the development of the first-instar larvae and increased the development of the third-instar larvae but there was no effect on pupae. …”