Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
slight decrease » slight increase (Expand Search)
larger decrease » marked decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
slight decrease » slight increase (Expand Search)
larger decrease » marked decrease (Expand Search)
-
3621
BWO-BiLSTM model prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3622
Change in panel quantile regression coefficients.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3623
Bi-LSTM architecture diagram.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3624
STL Linear Combination Forecast Graph.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3625
LOSS curves for BWO-BiLSTM model training.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3626
Definitions of variables and measurements.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3627
Analysis of STL-PCA prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3628
Accumulated contribution rate of PCA.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3629
Regression estimates: Double threshold model.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3630
Figure of ablation experiment.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3631
Results from cross sectional dependence test.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3632
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3633
Parameter optimization results of BiLSTM.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3634
Descriptive statistical analysis of data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3635
The MAE value of the model under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3636
Three error values under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3637
Panel quantile regression results.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3638
Decomposition of time scries plot.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3639
Achieving Improved Ion Swarm Shaping Based on Ion Leakage Control in Ion Mobility Spectrometry
Published 2025“…In Ion Mobility Spectrometry (IMS), ion gates are essential for controlling ion flow, significantly impacting detection sensitivity and resolution. …”
-
3640