Showing 4,641 - 4,660 results of 21,342 for search '(( significantly ((teer decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', query time: 0.48s Refine Results
  1. 4641
  2. 4642
  3. 4643

    Bar charts showing the numbers of significantly differentially expressed genes for the different contrasts. by Gillian P. McHugo (8965919)

    Published 2025
    “…<p>The extent of the bar above and below 0 on the vertical axis indicates the numbers of significantly differentially expressed genes (DEGs; B-H <i><i>P</i></i><sub>adj.…”
  4. 4644

    Multi-organ differential gene expression changes statistically significant at hypertension onset. by Eden Hornung (20148295)

    Published 2024
    “…<i>Tgfb1</i> is significantly decreased in male SHR kidney compared to female at 16 weeks of age (p = 0.004). …”
  5. 4645
  6. 4646

    Univariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  7. 4647

    Overview of individuals in the study. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  8. 4648

    Multivariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  9. 4649

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  10. 4650

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  11. 4651

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  12. 4652

    S1 File - by Ingmar Lundquist (46422)

    Published 2025
    “…Additionally, the significance of extracellular NO on GSIS was studied. …”
  13. 4653
  14. 4654
  15. 4655
  16. 4656

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  17. 4657

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  18. 4658

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  19. 4659

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  20. 4660

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”