Showing 5,001 - 5,020 results of 21,342 for search '(( significantly ((teer decrease) OR (mean decrease)) ) OR ( significant decrease decrease ))', query time: 0.39s Refine Results
  1. 5001

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  2. 5002

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  3. 5003
  4. 5004

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  5. 5005
  6. 5006

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  7. 5007
  8. 5008

    Mineral component content. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  9. 5009

    Micro-parameters of the numerical model. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  10. 5010

    Microcracks on the surface of the coal sample. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  11. 5011

    Flowchart of the test. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  12. 5012

    Distribution of thermal cracks. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  13. 5013

    S1 File - by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  14. 5014

    Confusion matrix for ClinicalBERT model. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  15. 5015

    Confusion matrix for LastBERT model. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  16. 5016

    Student model architecture. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  17. 5017

    Configuration of the LastBERT model. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  18. 5018

    Confusion matrix for DistilBERT model. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  19. 5019

    ROC curve for LastBERT model. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
  20. 5020

    Sample Posts from the ADHD dataset. by Ahmed Akib Jawad Karim (20427740)

    Published 2025
    “…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”