Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
81
Summary of study participation and feasibility.
Published 2025“…Considering the high prevalence of BV among African, Caribbean and Black (ACB) women, we conducted a prospective, randomized, open-label phase 1 clinical trial to determine the feasibility, safety and tolerability of administering low-dose estrogen, probiotics or both in combination to improve vaginal health and decrease HIV-1 susceptibility.…”
-
82
Participant characteristics by village.
Published 2025“…We hypothesized that farmers with greater market-based wealth and more farming experience would have higher odds of adaptation. …”
-
83
-
84
Antibodies used in this study.
Published 2024“…Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with <i>M</i>. …”
-
85
Time and flowrate used for proteomics.
Published 2024“…Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with <i>M</i>. …”
-
86
S1 Graphical abstract -
Published 2024“…Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with <i>M</i>. …”
-
87
Supplementary information–dataset.
Published 2024“…HF diet and light treatment increased fecal corticosterone output (P<0.05) during lactation. Dams exhibited significant 12 h and 24 h rhythms of activity out of the nest in the first 48 h postnatal, with time outside of the nest greater in the second 24 h period. …”
-
88
Experimental timeline overview.
Published 2024“…HF diet and light treatment increased fecal corticosterone output (P<0.05) during lactation. Dams exhibited significant 12 h and 24 h rhythms of activity out of the nest in the first 48 h postnatal, with time outside of the nest greater in the second 24 h period. …”
-
89
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
90
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
91
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
92
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
93
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
94
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
95
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
96
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
97
Cyclization Decoded: Engineering Amylomaltase for Efficient α‑Glucan Transformations
Published 2025“…Furthermore, we identify that postglycosylation noncovalent polysaccharide chain transfer emerges as the decisive factor in cyclization, particularly for AM–degree of polymerization (DP) greater than 30 substrate complexes, where this noncovalent step (≥13.6 kcal/mol) dictates the rate of CA production. 57 variants with enhanced activity (up to a 2.3-fold increase) were engineered in our biochemical experiments by strategically modulating the chain transfer step. …”
-
98
Scheme of g-λ model with larger values λ.
Published 2024“…The findings suggest that when λ is respectively equal to 4.19, 8.57, 10, and 12.15, the peak particle velocity (PPV) of the transmitted waves is significantly close to the incident wave amplitude. Furthermore, when λ is fixed, the energy transmission coefficient increases with the incident wave amplitude but decreases with the incident wave frequency. …”
-
99
-
100
Supplementary Material for: Forecasting the Worldwide Impact of Stroke for individuals aged 45 and above
Published 2024“…Background:We aimed to assess the global impact of stroke in people aged 45 years and older between 1990 and 2030, focusing on morbidity, mortality and disability-adjusted life years (DALYs). …”