Showing 4,841 - 4,860 results of 21,342 for search '(( significantly ((we decrease) OR (greatest decrease)) ) OR ( significant decrease decrease ))', query time: 0.51s Refine Results
  1. 4841
  2. 4842

    Univariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  3. 4843

    Overview of individuals in the study. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  4. 4844

    Multivariate analyses. by Zachary E. M. Giovannini-Green (22008277)

    Published 2025
    “…<div><p>During the global COVID-19 pandemic, emergency departments (EDs) saw an overall decrease in utilization. However, some vulnerable groups, such as those living with psychotic disorders, must often rely on the services provided by EDs. …”
  5. 4845
  6. 4846

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  7. 4847

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  8. 4848

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  9. 4849
  10. 4850
  11. 4851
  12. 4852
  13. 4853

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  14. 4854

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  15. 4855

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  16. 4856

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  17. 4857

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  18. 4858

    Amplitude for A/L = 0.02. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  19. 4859

    Graph for maximum Frequency at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  20. 4860

    Graph for maximum Power at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”