Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
4841
Improved Accuracy and Reliability in Untargeted Analysis with LC-ESI-QTOF/MS<sup>1</sup> by Ensemble Averaging
Published 2025“…It was proved that ensemble averaging allows an increase in the S/N up to a factor of 10, and the relative standard deviation of the accurate masses and retention time decreased by a factor of 10. …”
-
4842
Flow chart of study participants.
Published 2025“…Due to multiple comparisons, the level of significance was set at 0.00625. The results of this study revealed that muscle endurance values increased significantly (P < 0.001) after 8 weeks of iron supplementation compared to pre-intervention values. …”
-
4843
Downregulation of TRIM37 expression exacerbates pathological damage in the MS model.
Published 2025“…<p><b>(a, b)</b> Western blot analysis revealed a significant decrease in MBP expression in oligodendrocytes in the LPC-induced MS model group (n = 3) compared to the control group. …”
-
4844
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4845
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4846
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4847
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4848
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4849
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4850
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4851
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
4852
Battery parameters.
Published 2025“…The acoustic emission waveforms exhibited a dual-peak characteristic throughout the entire charging and discharging cycles. We observed a pattern in which the time intervals between the waveforms decreased rapidly at first and then stabilized. …”
-
4853
The aging parameters of each group of batteries.
Published 2025“…The acoustic emission waveforms exhibited a dual-peak characteristic throughout the entire charging and discharging cycles. We observed a pattern in which the time intervals between the waveforms decreased rapidly at first and then stabilized. …”
-
4854
Minimal data set.
Published 2025“…The acoustic emission waveforms exhibited a dual-peak characteristic throughout the entire charging and discharging cycles. We observed a pattern in which the time intervals between the waveforms decreased rapidly at first and then stabilized. …”
-
4855
Experimental lithium-ion batteries.
Published 2025“…The acoustic emission waveforms exhibited a dual-peak characteristic throughout the entire charging and discharging cycles. We observed a pattern in which the time intervals between the waveforms decreased rapidly at first and then stabilized. …”
-
4856
Schematic diagram of two time intervals.
Published 2025“…The acoustic emission waveforms exhibited a dual-peak characteristic throughout the entire charging and discharging cycles. We observed a pattern in which the time intervals between the waveforms decreased rapidly at first and then stabilized. …”
-
4857
-
4858
Data Sheet 1_Premature renal epithelial cell senescence promoted by LXN/Rps3/p53 signaling pathway activation increases calcium oxalate crystal deposition by altering macrophage po...
Published 2025“…Furthermore, reducing cellular LXN/Rps3/p53 signaling significantly decreased SASP factors in the culture medium and simultaneously abolished M1-like phenotype macrophage polarization. …”
-
4859
Data Sheet 1_Loss of a primary cilia protein ARL13B promotes TGFβ-1 induced EMT of RPE in proliferative vitreoretinopathy via increasing Smad3 expression.pdf
Published 2025“…Mechanistically, ARL13B KD enhanced TGFβ1 signaling by increasing the phosphorylation and expression of Smad3.…”
-
4860
Impact of sludge dosage on HPST.
Published 2025“…As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.</p></div>…”