بدائل البحث:
significantly high » significantly higher (توسيع البحث), significantly change (توسيع البحث), significantly less (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
high decrease » slight decrease (توسيع البحث), high degree (توسيع البحث), high disease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
significantly high » significantly higher (توسيع البحث), significantly change (توسيع البحث), significantly less (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
high decrease » slight decrease (توسيع البحث), high degree (توسيع البحث), high disease (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
-
1
Structure diagram of ensemble model.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
2
Fitting formula parameter table.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
3
Test plan.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
4
Fitting surface parameters.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
5
Model generalisation validation error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
6
Empirical model prediction error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
7
Fitting curve parameters.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
8
Test instrument.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
9
Empirical model establishment process.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
10
Model prediction error trend chart.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
11
Basic physical parameters of red clay.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
12
BP neural network structure diagram.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
13
Structure diagram of GBDT model.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
14
Model prediction error analysis index.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
15
Fitting curve parameter table.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
16
Model prediction error analysis.
منشور في 2024"…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
-
17
Design of the D-trial.
منشور في 2024"…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
-
18
Estimated mean values for light interception.
منشور في 2024"…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
-
19
Raw data V-trial.
منشور في 2024"…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
-
20
Raw data D-trial.
منشور في 2024"…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"