يعرض 1 - 20 نتائج من 96 نتيجة بحث عن '(( significantly ((we decrease) OR (linear decrease)) ) OR ( significantly reduced decrease ))~', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1

    Baseline patient characteristics. حسب Oscar F. C. van den Bosch (22184246)

    منشور في 2025
    "…While mean respiratory rate was not affected, midazolam resulted in a significant decrease in both VRR (ß = −0.071, 95% CI: −0.120 to −0.021) and VTV (ß = −0.117, 95% CI: −0.170 to −0.062). …"
  2. 2

    Cohort characteristics. حسب Fernanda Talarico (807333)

    منشور في 2024
    "…</p><p>Results</p><p>The analysis reveals a significant decrease in all health services utilization from 2016 to 2019, followed by an increase until 2022. …"
  3. 3
  4. 4

    Study-related adverse events. حسب Benjamin R. Lewis (22279166)

    منشور في 2025
    "…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …"
  5. 5

    Study flow chart. حسب Benjamin R. Lewis (22279166)

    منشور في 2025
    "…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …"
  6. 6

    Study CONSORT diagram. حسب Benjamin R. Lewis (22279166)

    منشور في 2025
    "…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …"
  7. 7

    Geometric manifold comparison visualization حسب Eloy Geenjaar (21533195)

    منشور في 2025
    "…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
  8. 8

    Hyperparameter ranges حسب Eloy Geenjaar (21533195)

    منشور في 2025
    "…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
  9. 9

    Convolutional vs RNN context encoder حسب Eloy Geenjaar (21533195)

    منشور في 2025
    "…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
  10. 10

    Design of the D-trial. حسب Torsten Schober (20485754)

    منشور في 2024
    "…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
  11. 11

    Estimated mean values for light interception. حسب Torsten Schober (20485754)

    منشور في 2024
    "…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
  12. 12

    Raw data V-trial. حسب Torsten Schober (20485754)

    منشور في 2024
    "…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
  13. 13

    Raw data D-trial. حسب Torsten Schober (20485754)

    منشور في 2024
    "…An increase in PD led to a linear decrease in inflorescence yield per plant (<i>p</i> = 0.02), whereas a positive linear relationship was found for inflorescence yield (<i>p</i> = 0.0001) and CBD yield (<i>p</i> = 0.0002) per m<sup>2</sup>. …"
  14. 14

    Primer sequences used for RT-PCR. حسب Jingjing Chen (293564)

    منشور في 2025
    "…Notably, SIRT1 levels decrease with age in both mice and during cellular senescence, highlighting its significance in anti-aging processes. …"
  15. 15
  16. 16

    Scores vs Skip ratios on single-agent task. حسب Hongjie Zhang (136127)

    منشور في 2025
    "…Inspired by human decision-making patterns, which involve reasoning only on critical states in continuous decision-making tasks without considering all states, we introduce the <i>LazyAct</i> algorithm. This algorithm significantly reduces the number of inferences while preserving the quality of the policy. …"
  17. 17

    Time(s) and GFLOPs savings of single-agent tasks. حسب Hongjie Zhang (136127)

    منشور في 2025
    "…Inspired by human decision-making patterns, which involve reasoning only on critical states in continuous decision-making tasks without considering all states, we introduce the <i>LazyAct</i> algorithm. This algorithm significantly reduces the number of inferences while preserving the quality of the policy. …"
  18. 18

    The source code of LazyAct. حسب Hongjie Zhang (136127)

    منشور في 2025
    "…Inspired by human decision-making patterns, which involve reasoning only on critical states in continuous decision-making tasks without considering all states, we introduce the <i>LazyAct</i> algorithm. This algorithm significantly reduces the number of inferences while preserving the quality of the policy. …"
  19. 19

    Win rate vs Skip ratios on multi-agents tasks. حسب Hongjie Zhang (136127)

    منشور في 2025
    "…Inspired by human decision-making patterns, which involve reasoning only on critical states in continuous decision-making tasks without considering all states, we introduce the <i>LazyAct</i> algorithm. This algorithm significantly reduces the number of inferences while preserving the quality of the policy. …"
  20. 20

    Visualization on SMAC-25m based on <i>LazyAct</i>. حسب Hongjie Zhang (136127)

    منشور في 2025
    "…Inspired by human decision-making patterns, which involve reasoning only on critical states in continuous decision-making tasks without considering all states, we introduce the <i>LazyAct</i> algorithm. This algorithm significantly reduces the number of inferences while preserving the quality of the policy. …"