Showing 4,641 - 4,660 results of 21,342 for search '(( significantly ((we decrease) OR (mean decrease)) ) OR ( significant decrease decrease ))', query time: 0.34s Refine Results
  1. 4641

    Patient characteristics. by Jonathan S. Jahr (2709088)

    Published 2025
    “…It has also been hypothesized that the bradycardia and rare instances of cardiac arrest occurring after the use of sugammadex may be due to a transient decrease in circulating corticosteroids, causing a temporary ‘mini Addisonian crisis.’ …”
  2. 4642

    Treatment with vitamin D3 reduced the viability of cancer cell lines: <i>1A & 1B.</i> by Vidya G. Bettada (22208808)

    Published 2025
    “…Mouse EAC cells showed a decrease in cell viability starting from 250 µM at 24h of treatment. …”
  3. 4643

    Vitamin D3, but not the Cisplatin, could moderately reduce STZ-induced hyperglycemia in mice (a) Schematic representation of experimental protocol followed in the study: After accl... by Vidya G. Bettada (22208808)

    Published 2025
    “…(c) Vitamin D3 and the positive control Cisplatin differently modulated FBG in hyperglycaemic mice: Intraperitoneal administration of vitamin D3 very minimally decreased FBG compared to vehicle control at the end of the study. …”
  4. 4644

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …”
  5. 4645

    Unraveling the Mechanism of 1‑Deoxynojirimycin (DNJ) Accumulation: The Role of SWEET3 in Mulberry Chloroplasts by Zhen Yang (107412)

    Published 2025
    “…Transient overexpression or RNA interference of <i>SWEET3</i> in mulberry leaves significantly increased or decreased DNJ levels, respectively, while stable overexpression in hairy roots enhanced DNJ accumulation. …”
  6. 4646
  7. 4647
  8. 4648

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  9. 4649

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  10. 4650

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  11. 4651

    Estimated results of the mediation effect. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  12. 4652

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  13. 4653

    Panel unit root test result. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  14. 4654

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  15. 4655

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  16. 4656

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  17. 4657

    Kernel density estimation for CO2. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  18. 4658

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  19. 4659

    Change in panel quantile regression coefficients. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  20. 4660

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”