Showing 201 - 220 results of 5,461 for search '(( significantly higher decrease ) OR ( significant ((shape decrease) OR (step decrease)) ))', query time: 0.66s Refine Results
  1. 201
  2. 202
  3. 203
  4. 204

    Generated spline library. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  5. 205

    Correlation coefficient matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  6. 206

    RMSE versus learning rate. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  7. 207

    RMSE versus training parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  8. 208

    Assembly process of machine recognition form. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  9. 209

    Process of steel truss incremental launching. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  10. 210

    CGAN and AutoML stacking device. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  11. 211

    U-wave estimates versus R-matrix noise variance. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  12. 212

    Sliding window process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  13. 213

    Assembly error angle of a single spline. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  14. 214

    Original record form of error matrix. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  15. 215

    Form for machine recognition. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  16. 216

    RMSE versus architectural parameters. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  17. 217

    Kalman process. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  18. 218

    Attention mechanism. by Zhe Hu (787283)

    Published 2025
    “…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
  19. 219

    Raw data_clean. by Carlos Sepúlveda (15272797)

    Published 2025
    “…Conversely, being overweight or obese is associated with lower CRF, which can lead to decreased daily energy expenditure and reduced physical activity. …”
  20. 220

    Experimental design. by Carlos Sepúlveda (15272797)

    Published 2025
    “…Conversely, being overweight or obese is associated with lower CRF, which can lead to decreased daily energy expenditure and reduced physical activity. …”