Showing 961 - 980 results of 21,342 for search '(( significantly higher decrease ) OR ( significant decrease decrease ))', query time: 0.26s Refine Results
  1. 961

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  2. 962

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  3. 963

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  4. 964

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  5. 965

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  6. 966

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  7. 967

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  8. 968

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  9. 969

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  10. 970

    STL Linear Combination Forecast Graph. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  11. 971

    LOSS curves for BWO-BiLSTM model training. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  12. 972

    Analysis of STL-PCA prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  13. 973

    Accumulated contribution rate of PCA. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  14. 974

    Figure of ablation experiment. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  15. 975

    Flowchart of the STL-PCA-BWO-BiLSTM model. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  16. 976

    Parameter optimization results of BiLSTM. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  17. 977

    Descriptive statistical analysis of data. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  18. 978

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  19. 979

    Three error values under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  20. 980

    Decomposition of time scries plot. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”