Showing 161 - 180 results of 1,238 for search '(( significantly higher decrease ) OR ( significantly improve decrease ))~', query time: 0.42s Refine Results
  1. 161
  2. 162

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  3. 163

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  4. 164

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  5. 165

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  6. 166

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  7. 167

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  8. 168

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  9. 169

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  10. 170

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  11. 171

    STL Linear Combination Forecast Graph. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  12. 172

    LOSS curves for BWO-BiLSTM model training. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  13. 173

    Analysis of STL-PCA prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  14. 174

    Accumulated contribution rate of PCA. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  15. 175

    Figure of ablation experiment. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  16. 176

    Flowchart of the STL-PCA-BWO-BiLSTM model. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  17. 177

    Parameter optimization results of BiLSTM. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  18. 178

    Descriptive statistical analysis of data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  19. 179

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  20. 180

    Three error values under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”