Showing 2,321 - 2,340 results of 5,414 for search '(( significantly impact decrease ) OR ( significantly ((teer decrease) OR (linear decrease)) ))', query time: 0.65s Refine Results
  1. 2321
  2. 2322
  3. 2323

    Regression results of the Callaway method. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  4. 2324

    Regression results of crowding out effects. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  5. 2325

    Article data. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  6. 2326

    Overidentification test results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  7. 2327

    Quantile regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  8. 2328

    Instrumental variable regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  9. 2329

    Other robust regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  10. 2330

    Baseline regression results. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  11. 2331

    Results of propensity score matching. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  12. 2332

    Parallel trend test. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  13. 2333

    Placebo test. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  14. 2334

    Descriptive statistics of variables. by Pu Miao (12886949)

    Published 2025
    “…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
  15. 2335

    Raw data for HCs. by Beshir Bedru Nasir (8218863)

    Published 2024
    “…These factors collectively posed significant obstacles to effective TB care during the pandemic.…”
  16. 2336

    Raw data for hospitals. by Beshir Bedru Nasir (8218863)

    Published 2024
    “…These factors collectively posed significant obstacles to effective TB care during the pandemic.…”
  17. 2337

    Raw data. by Beshir Bedru Nasir (8218863)

    Published 2024
    “…These factors collectively posed significant obstacles to effective TB care during the pandemic.…”
  18. 2338
  19. 2339

    GETM dataset - The major role of riverine outflows in shaping the current and future habitats of Harmful Algal Blooms : the case of the North Sea by Olaf Duteil (20376648)

    Published 2024
    “…These findings have significant implications for environmental policy and management.…”
  20. 2340

    <b>Distributed Hydraulic Micro-Cooling (MHD): A Low-Cost, High-Impact Urban Heat Mitigation Strategy</b> / <b>Enfriamiento Hidráulico Micro-Distribuido (MHD): Estrategia Urbana de... by Ricardo Riveros (22484566)

    Published 2025
    “…<p><br></p><p><br></p><p dir="ltr"><b>Distributed Hydraulic Micro-Cooling (MHD): A Low-Cost, High-Impact Urban Heat Mitigation Strategy</b></p><p dir="ltr"><b>Description :</b><br>Urban Heat Islands (UHI) represent one of the most severe and accelerating climate risks for cities worldwide. …”