Search alternatives:
significantly improved » significantly increased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
improved decrease » improved urease (Expand Search), marked decrease (Expand Search)
significantly improved » significantly increased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
improved decrease » improved urease (Expand Search), marked decrease (Expand Search)
-
2021
-
2022
-
2023
-
2024
-
2025
-
2026
-
2027
MGPC module.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2028
Comparative experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2029
Pruning experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2030
Parameter setting table.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2031
DTADH module.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2032
Ablation experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2033
Multi scale detection.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2034
MFDPN module.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2035
Detection effect of different sizes.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2036
Radar chart comparing indicators.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2037
MFD-YOLO structure.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2038
Detection results of each category.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
2039
-
2040