Showing 161 - 180 results of 913 for search '(( significantly increased decrease ) OR ( significant ((a decrease) OR (point decrease)) ))~', query time: 0.52s Refine Results
  1. 161

    Droplet boiling modes at different temperatures. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  2. 162

    Risk Classification Diagram of Hot Surface. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  3. 163

    Physical parameters of engine lubricating oil. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  4. 164

    Variation of heat flow with wall temperature. by Lei Bai (631944)

    Published 2025
    “…The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  5. 165
  6. 166
  7. 167
  8. 168
  9. 169

    Histogram of the area factorψ. by Hong Zhang (25820)

    Published 2025
    “…The measured <i>I</i><sub>s</sub> decreases following a power-law trend as <i>β</i> and <i>D</i> increase, with weathering reducing the sensitivity of <i>I</i><sub>s</sub> to <i>β</i> but not significantly altering its sensitivity to <i>D</i>. …”
  10. 170

    Raw dataset Fig. 6. by Hong Zhang (25820)

    Published 2025
    “…The measured <i>I</i><sub>s</sub> decreases following a power-law trend as <i>β</i> and <i>D</i> increase, with weathering reducing the sensitivity of <i>I</i><sub>s</sub> to <i>β</i> but not significantly altering its sensitivity to <i>D</i>. …”
  11. 171

    Schematic for measuring <i>D</i> and <i>D</i>′ values. by Hong Zhang (25820)

    Published 2025
    “…The measured <i>I</i><sub>s</sub> decreases following a power-law trend as <i>β</i> and <i>D</i> increase, with weathering reducing the sensitivity of <i>I</i><sub>s</sub> to <i>β</i> but not significantly altering its sensitivity to <i>D</i>. …”
  12. 172
  13. 173
  14. 174
  15. 175
  16. 176
  17. 177
  18. 178
  19. 179
  20. 180