Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
point decrease » point increase (Expand Search)
non decrease » nn decrease (Expand Search), note decreased (Expand Search), mean decrease (Expand Search)
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
point decrease » point increase (Expand Search)
non decrease » nn decrease (Expand Search), note decreased (Expand Search), mean decrease (Expand Search)
-
1361
-
1362
-
1363
-
1364
-
1365
-
1366
-
1367
-
1368
-
1369
The impact of health knowledge and obesity status on the effectiveness of a warning label.
Published 2024Subjects: -
1370
-
1371
-
1372
-
1373
-
1374
Neural timescales increase with cognitive demands.
Published 2025“…Timescales in the period following search display onset (red dashed line) and after button press (black dashed line) decrease in pop-out condition relative to visual search condition returning to baseline around 1s (black bar represents significant time points <i>p</i> < 0.05). …”
-
1375
-
1376
Scheme of the test section.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1377
Effects on cooling air mass flow rate.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1378
3D model and section view of E3 NGV.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1379
Conditions for uncertainty analyses.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
1380
Scheme for mesh convergence study.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”