Showing 1,661 - 1,680 results of 19,581 for search '(( significantly increased decrease ) OR ( significant ((shape decrease) OR (a decrease)) ))', query time: 0.62s Refine Results
  1. 1661

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  2. 1662

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  3. 1663

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  4. 1664

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  5. 1665

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  6. 1666

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  7. 1667

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  8. 1668

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  9. 1669

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  10. 1670

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  11. 1671

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  12. 1672
  13. 1673
  14. 1674
  15. 1675

    Exploring Metalloproteome Remodeling in Calprotectin-Stressed Acinetobacter baumannii Using Chemoproteomics by Maximillian K. Osterberg (22514185)

    Published 2025
    “…A majority of the 2645 quantifiable Cys-containing peptides that show an increase in abundance-corrected Cys reactivity (150) are derived from known Zn-, Fe-, and Fe–S-cluster proteins, revealing a significant decrease in metal occupancy (undermetalation) across the proteome. …”
  16. 1676

    Exploring Metalloproteome Remodeling in Calprotectin-Stressed Acinetobacter baumannii Using Chemoproteomics by Maximillian K. Osterberg (22514185)

    Published 2025
    “…A majority of the 2645 quantifiable Cys-containing peptides that show an increase in abundance-corrected Cys reactivity (150) are derived from known Zn-, Fe-, and Fe–S-cluster proteins, revealing a significant decrease in metal occupancy (undermetalation) across the proteome. …”
  17. 1677

    Exploring Metalloproteome Remodeling in Calprotectin-Stressed Acinetobacter baumannii Using Chemoproteomics by Maximillian K. Osterberg (22514185)

    Published 2025
    “…A majority of the 2645 quantifiable Cys-containing peptides that show an increase in abundance-corrected Cys reactivity (150) are derived from known Zn-, Fe-, and Fe–S-cluster proteins, revealing a significant decrease in metal occupancy (undermetalation) across the proteome. …”
  18. 1678
  19. 1679
  20. 1680