Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
small decrease » small increased (Expand Search)
point decrease » point increase (Expand Search)
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
small decrease » small increased (Expand Search)
point decrease » point increase (Expand Search)
-
861
-
862
-
863
-
864
Group-level narrow- and broad-band spectral changes after hemispherotomy reveal a marked EEG slowing of the isolated cortex, robust across patients.
Published 2025“…<b>(C)</b> Following surgery, slow wave activity increased in the disconnected cortex, as indexed by a significant pre to post increase of the Slow Delta PSD in the disconnected cortex (i.e., positive post-pre differences in the disconnected cortex). …”
-
865
-
866
-
867
-
868
Evogliptin attenuates the phenotypic switch of VSMCs during CER treatment by decreasing the osteogenesis-associated genes <i>in-vitro.</i>
Published 2025“…(F-G) Representative western blots and summarized bar graph showed EVO significantly increased protein expression of SM22α and decreased RUNX2 in CER treated P<sub>i</sub>-induced VSMCs. …”
-
869
Amplitude for A/L = 0.29.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
870
Top view of the experimental setup.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
871
Amplitude for A/L = 0.338.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
872
Parameters of energy harvesting.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
873
Graph for Max Amplitude/Length at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
874
Amplitude for A/L = 0.02.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
875
Graph for maximum Frequency at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
876
Graph for maximum Power at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
877
Amplitude for A/L = 0.03.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
878
Summary of experimentation results.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
879
Piezoelectric eel.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
880