بدائل البحث:
significantly increased » significant increase (توسيع البحث)
increased decrease » increased release (توسيع البحث), increased crash (توسيع البحث)
small decrease » small increased (توسيع البحث)
point decrease » point increase (توسيع البحث)
significantly increased » significant increase (توسيع البحث)
increased decrease » increased release (توسيع البحث), increased crash (توسيع البحث)
small decrease » small increased (توسيع البحث)
point decrease » point increase (توسيع البحث)
-
41
Supplementary file 1_Forced intensity-controlled endurance training on a small-animal treadmill machine inducing murine cardiac hypertrophy: insights and comparison to voluntary ru...
منشور في 2025"…After 8 and 12 weeks of training, the heart weight/tibia length ratio was significantly higher than the control. Cardiomyocyte (CM) cross-sectional areas were enlarged by 1.8-fold and shifted to the increased surface area upon training. …"
-
42
Automated matching and visualisation of magnetic flux leakage data in shale gas pipeline based on ICP and DBSCAN algorithm
منشور في 2025"…The findings show that small-scale datasets or higher false detection rates lead to decreased accuracy. …"
-
43
Canopy effects from biomass utilization on the Priest River Experimental Forest
منشور في 2025"…Our BRDI research goals, targeted the soil and water component of the area where the biomass was removed once reduction had taken place These goals examined whether biomass reduction/removal indicated a significant increase in soil erosion, decrease in infiltration or otherwise adversely impact water resources, compared to control sites. …"
-
44
-
45
Dataset visualization diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
46
Dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
47
Performance comparison of different models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
48
C2f and BC2f module structure diagrams.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
49
YOLOv8n detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
50
YOLOv8n-BWG model structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
51
BiFormer structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
52
YOLOv8n-BWG detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
53
GSConv module structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
54
Performance comparison of three loss functions.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
55
mAP0.5 Curves of various models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
56
Network loss function change diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
57
Comparative diagrams of different indicators.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
58
YOLOv8n structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
59
Geometric model of the binocular system.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
60
Enhanced dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"