Showing 14,521 - 14,540 results of 14,724 for search '(( significantly increased decrease ) OR ( significant changes decrease ))*', query time: 0.52s Refine Results
  1. 14521

    An Anti-Inflammatory and Antioxidant Patch Based on Injectable Bioadhesive Hydrogel Prevents Postoperative Atrial Fibrillation by Wei-Qi Lu (445130)

    Published 2025
    “…In a rat pericarditis model, this localized system significantly reduced atrial inflammation and oxidative stress, promoted anti-inflammatory M2 macrophage polarization, enhanced electrical stability, and markedly decreased POAF susceptibility.…”
  2. 14522

    An Anti-Inflammatory and Antioxidant Patch Based on Injectable Bioadhesive Hydrogel Prevents Postoperative Atrial Fibrillation by Wei-Qi Lu (445130)

    Published 2025
    “…In a rat pericarditis model, this localized system significantly reduced atrial inflammation and oxidative stress, promoted anti-inflammatory M2 macrophage polarization, enhanced electrical stability, and markedly decreased POAF susceptibility.…”
  3. 14523

    Table 1_The real-world safety of Nivolumab: a pharmacovigilance analysis based on the FDA adverse event reporting system.docx by Yutong Wu (3130584)

    Published 2025
    “…The most frequently reported AEs included fatigue, dyspnea, musculoskeletal pain, decreased appetite, cough, nausea, and constipation. …”
  4. 14524

    Table 1_Body mass index influences Antimüllerian Hormone and inhibin B in adult males.xls by Wen Zhou (49050)

    Published 2025
    “…However, the effect size for AMH was relatively low, which may limit its clinical significance. In the fully adjusted model, the increase in BMI in Q4 was linked to decreases of 1.62 ng ml-1 in AMH and 18.20 pg ml<sup>-1</sup> in INHB, but these associations were not statistically significant (P>0.05). …”
  5. 14525
  6. 14526

    Table 1_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.xls by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  7. 14527

    Image 13_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  8. 14528

    Image 1_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  9. 14529
  10. 14530

    Image 12_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  11. 14531

    Image 11_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  12. 14532

    Image 2_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  13. 14533
  14. 14534

    Image 10_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  15. 14535

    Image 9_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  16. 14536

    Image 3_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  17. 14537

    Image 7_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  18. 14538

    Image 6_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  19. 14539

    Image 8_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  20. 14540

    Image 5_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”