Search alternatives:
significantly large » significantly larger (Expand Search), significantly longer (Expand Search), significantly change (Expand Search)
changed decrease » marked decrease (Expand Search), change increases (Expand Search), caused decreased (Expand Search)
larger decrease » marked decrease (Expand Search)
significantly large » significantly larger (Expand Search), significantly longer (Expand Search), significantly change (Expand Search)
changed decrease » marked decrease (Expand Search), change increases (Expand Search), caused decreased (Expand Search)
larger decrease » marked decrease (Expand Search)
-
161
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
162
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
163
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
164
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
165
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
166
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
167
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
168
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
169
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
170
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
171
-
172
-
173
-
174
-
175
-
176
Control (Ctrl) STZ mice show changes in glomerular morphology.
Published 2024“…However, Ctrl STZ mice show an increase in sclerotic glomeruli (A; arrow) and glomeruli with large capillary loops (*) compared to the other groups (quantification in panel C). 5–7 glomeruli/mouse in 4–6 mice per group were analyzed. …”
-
177
-
178
-
179
-
180
Dengue virus infection significantly changes cellular organic acid contents.
Published 2024Subjects: