Showing 101 - 120 results of 2,872 for search '(( significantly larger decrease ) OR ( significant ((inter decrease) OR (teer decrease)) ))', query time: 1.94s Refine Results
  1. 101
  2. 102
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107
  8. 108
  9. 109
  10. 110
  11. 111
  12. 112
  13. 113

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  14. 114

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  15. 115

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  16. 116

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  17. 117

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  18. 118

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  19. 119

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”
  20. 120

    Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers by Yiding Yuan (10918675)

    Published 2021
    “…Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. …”