Showing 141 - 160 results of 29,355 for search '(( significantly larger decrease ) OR ( significant change decrease ))', query time: 0.48s Refine Results
  1. 141
  2. 142
  3. 143

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  4. 144

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  5. 145

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  6. 146

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  7. 147

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  8. 148

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  9. 149

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  10. 150

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  11. 151

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  12. 152

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  13. 153
  14. 154
  15. 155
  16. 156
  17. 157
  18. 158
  19. 159
  20. 160