بدائل البحث:
significantly less » significantly lower (توسيع البحث), significantly reduce (توسيع البحث), significantly better (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
less decrease » mean decrease (توسيع البحث), teer decrease (توسيع البحث), levels decreased (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
significantly less » significantly lower (توسيع البحث), significantly reduce (توسيع البحث), significantly better (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
less decrease » mean decrease (توسيع البحث), teer decrease (توسيع البحث), levels decreased (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
-
201
-
202
-
203
-
204
-
205
-
206
-
207
Detailed information of the observation datasets.
منشور في 2025"…Understanding spatial-temporal characteristics of wind speed is significant in meteorology, coastal engineering design and maritime industries. …"
-
208
General technical specification for GW154/6700.
منشور في 2025"…Understanding spatial-temporal characteristics of wind speed is significant in meteorology, coastal engineering design and maritime industries. …"
-
209
Change in influenza vaccination uptake from May 2020 to October 2024 (weighted).
منشور في 2025الموضوعات: -
210
-
211
-
212
-
213
-
214
Geometric manifold comparison visualization
منشور في 2025"…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
-
215
Hyperparameter ranges
منشور في 2025"…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
-
216
Convolutional vs RNN context encoder
منشور في 2025"…In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. …"
-
217
-
218
-
219
Data for: Soil microplastics pollution can reduce viral abundance and have less consistent impacts on bacteria
منشور في 2025"…A number of environmental factors may affect viruses and their microbial hosts differentiate. Here we report two experiments that addressed the impacts of microplastics (MP) on viruses and bacteria in soils. …"
-
220