Search alternatives:
significantly linear » significant linear (Expand Search), significantly lower (Expand Search), significantly longer (Expand Search)
significantly mean » significantly less (Expand Search), significantly mediate (Expand Search), significantly impact (Expand Search)
linear decrease » linear increase (Expand Search)
significantly linear » significant linear (Expand Search), significantly lower (Expand Search), significantly longer (Expand Search)
significantly mean » significantly less (Expand Search), significantly mediate (Expand Search), significantly impact (Expand Search)
linear decrease » linear increase (Expand Search)
-
41
Model generalisation validation error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
42
Empirical model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
43
Fitting curve parameters.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
44
Test instrument.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
45
Empirical model establishment process.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
46
Model prediction error trend chart.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
47
Basic physical parameters of red clay.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
48
BP neural network structure diagram.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
49
Structure diagram of GBDT model.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
50
Model prediction error analysis index.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
51
Fitting curve parameter table.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
52
Model prediction error analysis.
Published 2024“…Furthermore, we quantitatively analyze the specific influence of water content and other factors on the thermal conductivity of stabilized soil and construct a comprehensive prediction model encompassing BP neural network, gradient boosting decision tree, and linear regression models. Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
53
Univariate analyses.
Published 2025“…Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
54
Overview of individuals in the study.
Published 2025“…Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
55
Multivariate analyses.
Published 2025“…Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
56
Mean parameter values for the selected crops.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
57
-
58
Results of the LMM analysis for IOP change.
Published 2025“…The mean GMS was 2.46 ± 1.33 preoperatively, and decreased to 1.32 ± 1.31 at 3 months, and 1.60 ± 1.41 at 12 months postoperatively. …”
-
59
Results of the LMM analysis for GMS change.
Published 2025“…The mean GMS was 2.46 ± 1.33 preoperatively, and decreased to 1.32 ± 1.31 at 3 months, and 1.60 ± 1.41 at 12 months postoperatively. …”
-
60