Search alternatives:
significantly longer » significantly lower (Expand Search), significantly larger (Expand Search), significantly higher (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
longer decrease » larger decrease (Expand Search), linear decrease (Expand Search), largest decrease (Expand Search)
significantly longer » significantly lower (Expand Search), significantly larger (Expand Search), significantly higher (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
longer decrease » larger decrease (Expand Search), linear decrease (Expand Search), largest decrease (Expand Search)
-
3261
-
3262
-
3263
-
3264
-
3265
-
3266
-
3267
-
3268
-
3269
-
3270
-
3271
-
3272
-
3273
-
3274
-
3275
Effects of ABZ on the viability of <i>M. corti.</i>
Published 2025“…Viability was not significantly affected for at least 3 days, and then decreased to 38% and 10% for ABZ 1 µM and 10 µM, respectively, by day 10. …”
-
3276
Major hyperparameters of RF-SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3277
Pseudo code for coupling model execution process.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3278
Major hyperparameters of RF-MLPR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3279
Results of RF algorithm screening factors.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3280
Schematic diagram of the basic principles of SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”