Showing 6,601 - 6,620 results of 18,469 for search '(( significantly lower decrease ) OR ( significantly ((linear decrease) OR (a decrease)) ))', query time: 0.60s Refine Results
  1. 6601
  2. 6602
  3. 6603
  4. 6604
  5. 6605
  6. 6606

    Data of AFR(%) of axial surface for each group. by Long Li (6555)

    Published 2025
    “…In the adhesive retention strength experiment, prostheses and abutments were bonded using permanent resin cement; retention strength was measured using a universal testing machine. Data were analyzed using one-way analysis of variance (ANOVA) or Welch’s ANOVA, followed by Tukey’s honestly significant difference test.…”
  7. 6607
  8. 6608
  9. 6609
  10. 6610
  11. 6611
  12. 6612

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  13. 6613

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  14. 6614

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  15. 6615
  16. 6616
  17. 6617
  18. 6618

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  19. 6619

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  20. 6620

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”