Search alternatives:
significantly nn » significantly _ (Expand Search), significantly i (Expand Search), significantly onto (Expand Search)
changed decrease » marked decrease (Expand Search), change increases (Expand Search), caused decreased (Expand Search)
larger decrease » marked decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
significantly nn » significantly _ (Expand Search), significantly i (Expand Search), significantly onto (Expand Search)
changed decrease » marked decrease (Expand Search), change increases (Expand Search), caused decreased (Expand Search)
larger decrease » marked decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
109
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
110
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
111
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
112
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
113
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
114
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
115
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
116
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
117
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
-
118
-
119
-
120