Search alternatives:
significantly predicted » significantly reduced (Expand Search), significantly reduce (Expand Search), significant predictor (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
predicted decrease » predicted secreted (Expand Search), reported decrease (Expand Search)
significantly predicted » significantly reduced (Expand Search), significantly reduce (Expand Search), significant predictor (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
predicted decrease » predicted secreted (Expand Search), reported decrease (Expand Search)
-
541
Accumulated contribution rate of PCA.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
542
Figure of ablation experiment.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
543
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
544
Parameter optimization results of BiLSTM.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
545
Descriptive statistical analysis of data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
546
The MAE value of the model under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
547
Three error values under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
548
Decomposition of time scries plot.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
549
-
550
-
551
-
552
-
553
Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments
Published 2025Subjects: -
554
-
555
The table shows the significant and non-significant altered group with different parameters.
Published 2025Subjects: -
556
Comparison of the cohesion ranges of different food categories under IDDSI levels.
Published 2025Subjects: -
557
-
558
-
559
-
560
Comparison of adhesiveness ranges for different food categories under IDDSI levels.
Published 2025Subjects: