Search alternatives:
significantly reported » significantly related (Expand Search), significantly restored (Expand Search), significantly predicted (Expand Search)
significantly lower » significantly higher (Expand Search)
reported decrease » reported disease (Expand Search), reported depressive (Expand Search), reported case (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
significantly reported » significantly related (Expand Search), significantly restored (Expand Search), significantly predicted (Expand Search)
significantly lower » significantly higher (Expand Search)
reported decrease » reported disease (Expand Search), reported depressive (Expand Search), reported case (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
-
2601
-
2602
The overall framework of CARAFE.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2603
KPD-YOLOv7-GD network structure diagram.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2604
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2605
Comparison of different pruning rates.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2606
Comparison of experimental results at ablation.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2607
Result of comparison of different lightweight.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2608
DyHead Structure.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2609
The parameters of the training phase.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2610
Structure of GSConv network.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2611
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2612
Improved model distillation structure.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2613
S1 Graphical abstract -
Published 2024“…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
-
2614
Procedural characteristics.
Published 2024“…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
-
2615
Clinical characteristics.
Published 2024“…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
-
2616
Study flowchart.
Published 2024“…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
-
2617
Data.
Published 2024“…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …”
-
2618
-
2619
Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity
Published 2025“…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
-
2620
Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity
Published 2025“…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”