Showing 701 - 720 results of 2,015 for search '(( significantly small decrease ) OR ( significantly ((largest decrease) OR (larger decrease)) ))', query time: 0.41s Refine Results
  1. 701
  2. 702
  3. 703
  4. 704
  5. 705
  6. 706
  7. 707
  8. 708
  9. 709
  10. 710
  11. 711

    Image 2_The anti-depressive role of the Pei Yuan Kai Yu formula in cerebral small vessel disease based on gut microbiota.tif by Lixuan Yang (7331786)

    Published 2025
    “…</p>Results<p>In rats with CSVD and depression, PY significantly increased body weight; alleviated depression-like behaviors; and decreased the levels of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in both serum and hippocampus. …”
  12. 712

    Image 1_The anti-depressive role of the Pei Yuan Kai Yu formula in cerebral small vessel disease based on gut microbiota.tif by Lixuan Yang (7331786)

    Published 2025
    “…</p>Results<p>In rats with CSVD and depression, PY significantly increased body weight; alleviated depression-like behaviors; and decreased the levels of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in both serum and hippocampus. …”
  13. 713

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  14. 714

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  15. 715

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  16. 716

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  17. 717

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  18. 718

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  19. 719

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”
  20. 720

    Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts by Mohmmad Faizan (14122382)

    Published 2025
    “…Phosphenium pincer complexes have emerged as promising alternatives to transition metal catalysts for small-molecule activation. Among them, only the 2,6-bis(o-carborano)pyridine-stabilized phosphenium cation (<b>1</b><sup><b>+</b></sup>) has been shown to activate molecular hydrogen (H<sub>2</sub>). …”