Showing 1,561 - 1,580 results of 7,521 for search '(( significantly small decrease ) OR ( significantly ((less decrease) OR (we decrease)) ))', query time: 0.48s Refine Results
  1. 1561

    Comparison of absolute and relative errors. by Lahoucine Tadoummant (21647670)

    Published 2025
    “…A significant reduction in both error types is observed, with the relative error |<i>X</i><sub><i>r</i></sub>| decreasing from approximately 10<sup>−1</sup> to 10<sup>−8</sup>. …”
  2. 1562

    Rate of convergence for relative errors. by Lahoucine Tadoummant (21647670)

    Published 2025
    “…A significant reduction in both error types is observed, with the relative error |<i>X</i><sub><i>r</i></sub>| decreasing from approximately 10<sup>−1</sup> to 10<sup>−8</sup>. …”
  3. 1563

    Ultrafine Particulate Matter Exacerbates the Risk of Delayed Neural Differentiation: Modulation Role of METTL3-Mediated m<sup>6</sup>A Modification by Rui Wang (52434)

    Published 2025
    “…By employing <i>N</i>6-methyladenosine (m<sup>6</sup>A) methylated RNA immunoprecipitation sequencing and bioinformatics, we identified <i>Zic1</i> as a key target of PM<sub>0.1</sub>-induced developmental disturbances. …”
  4. 1564
  5. 1565
  6. 1566
  7. 1567
  8. 1568
  9. 1569
  10. 1570
  11. 1571
  12. 1572

    Fig 1B raw image. by Rachel K. Meade (22216529)

    Published 2025
    “…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
  13. 1573

    S1A Fig raw image. by Rachel K. Meade (22216529)

    Published 2025
    “…From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
  14. 1574

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  15. 1575

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  16. 1576

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  17. 1577

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  18. 1578

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  19. 1579

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
  20. 1580

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”