Search alternatives:
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
marked decrease » marked increase (Expand Search)
large decrease » larger decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
1
-
2
Data Sheet 1_Emotional prompting amplifies disinformation generation in AI large language models.docx
Published 2025“…Introduction<p>The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. …”
-
3
Stepped-Wedge Trial Diagram.
Published 2025“…</p><p>Methods and analysis</p><p>The QM2-RC encompasses three interconnected projects (Project 1, 2, and 3) aimed at developing a quality management strategy and evaluating its impact on system performance across New York State. This report specifically focuses on Project 3, which involves a stepped-wedge trial with 35 clinics receiving a quality management intervention that includes performance coaching. …”
-
4
-
5
-
6
-
7
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
8
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
9
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
10
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
11
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
12
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20