Showing 1 - 20 results of 3,100 for search '(( strains ((((teer decrease) OR (nn decrease))) OR (a decrease)) ) OR ( a greater decrease ))', query time: 0.52s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    Strain at different positions of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…Test results indicate that the frozen soft rocks show strain softening characteristics. The stress—strain curve changes from a straight line to a curve as deviatoric stress constantly increases, while it decreases abruptly after the deviatoric stress reaches the peak and is slightly affected by the freezing temperature. …”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Positions of AE probes and strain gauges. by Zhenhua Wang (426041)

    Published 2025
    “…Test results indicate that the frozen soft rocks show strain softening characteristics. The stress—strain curve changes from a straight line to a curve as deviatoric stress constantly increases, while it decreases abruptly after the deviatoric stress reaches the peak and is slightly affected by the freezing temperature. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Graded loading creep stress loading level. by Dengke Yang (842532)

    Published 2025
    “…The results reveal that (1) freeze-thaw cycles exert a significant influence on the rock’s creep behavior, with axial strain, instantaneous strain, and creep strain increasing progressively with the number of freeze-thaw cycles; (2) dual-fractured rock samples with varying fracture angles exhibit distinct differences in creep phenomena, where increased fracture angles result in pronounced increases in instantaneous and creep strains, and higher horizontal stress levels lead to greater strain generation; (3) all rock samples with different pre-existing fractures exhibit rock bridge breakthrough during creep failure, and the variation in fracture angle affects the failure mode; (4) and the long-term strength of the rock varies with changes in fracture angle and freeze-thaw cycle frequency, showing an increasing trend with greater fracture angles but a rapid decrease with increasing freeze-thaw cycles. …”
  17. 17

    Schematic diagram of rock samples. by Dengke Yang (842532)

    Published 2025
    “…The results reveal that (1) freeze-thaw cycles exert a significant influence on the rock’s creep behavior, with axial strain, instantaneous strain, and creep strain increasing progressively with the number of freeze-thaw cycles; (2) dual-fractured rock samples with varying fracture angles exhibit distinct differences in creep phenomena, where increased fracture angles result in pronounced increases in instantaneous and creep strains, and higher horizontal stress levels lead to greater strain generation; (3) all rock samples with different pre-existing fractures exhibit rock bridge breakthrough during creep failure, and the variation in fracture angle affects the failure mode; (4) and the long-term strength of the rock varies with changes in fracture angle and freeze-thaw cycle frequency, showing an increasing trend with greater fracture angles but a rapid decrease with increasing freeze-thaw cycles. …”
  18. 18

    Rock mechanics testing machine. by Dengke Yang (842532)

    Published 2025
    “…The results reveal that (1) freeze-thaw cycles exert a significant influence on the rock’s creep behavior, with axial strain, instantaneous strain, and creep strain increasing progressively with the number of freeze-thaw cycles; (2) dual-fractured rock samples with varying fracture angles exhibit distinct differences in creep phenomena, where increased fracture angles result in pronounced increases in instantaneous and creep strains, and higher horizontal stress levels lead to greater strain generation; (3) all rock samples with different pre-existing fractures exhibit rock bridge breakthrough during creep failure, and the variation in fracture angle affects the failure mode; (4) and the long-term strength of the rock varies with changes in fracture angle and freeze-thaw cycle frequency, showing an increasing trend with greater fracture angles but a rapid decrease with increasing freeze-thaw cycles. …”
  19. 19
  20. 20