Search alternatives:
larger decrease » marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
age decrease » a decrease (Expand Search), we decrease (Expand Search), rate decreased (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
age decrease » a decrease (Expand Search), we decrease (Expand Search), rate decreased (Expand Search)
-
1
Factors associated with AL score (multivariable regression analyses for the third follow-up).
Published 2025Subjects: -
2
-
3
-
4
-
5
-
6
Annual treatment frequencies in all eyes.
Published 2025“…<p>The number of anti-VEGF treatments, STTA, MA-PC, PPV, and total treatments (mean ± SD) significantly decreased from 2.6 ± 1.6, 0.3 ± 0.8, 0.6 ± 0.8, 0.1 ± 0.3, and 3.7 ± 1.7 preoperatively to 0.8 ± 1.9, 0.0 ± 0.2, 0.3 ± 1.0, 0.0, and 1.2 ± 2.2; at year 2 to 0.7 ± 2.0, 0.1 ± 0.6, 0.0 ± 0.2, 0.0 ± 0.2, and 1.0 ± 2.1; and at year 3 to 0.9 ± 2.2, 0.0, 0.2 ± 1.0, 0.0 ± 0.2, and 1.1 ± 3.1 (Kruskal–Wallis test, P < 0.001; Dunn’s test, **P < 0.01). …”
-
7
Annual number of outpatient visits in all eyes.
Published 2025“…<p>Mean visit frequency (mean ± standard deviation) significantly decreased from 11.5 ± 4.3 preoperatively to 8.8 ± 4.1, 5.0 ± 3.4, and 4.4 ± 3.2 visits in the first, second, and third postoperative years, respectively (Kruskal–Wallis test, P < 0.001; Dunn’s test, **P < 0.01). …”
-
8
Time course of central retinal thickness (CRT) in recurrence and non-recurrence groups.
Published 2025“…These values significantly decreased in the first postoperative year to 2.3 ± 2.6, 0.1 ± 0.3, 0.8 ± 1.6, 0, and 3.1 ± 2.8; in the second year to 2.1 ± 2.8, 0.4 ± 1.0, 0.0, 0.1 ± 0.3, and 2.6 ± 2.8; and in the third year to 2.0 ± 2.2, 0, 0.6 ± 1.7, 0.1 ± 0.3, and 2.8 ± 3.5 (Kruskal–Wallis test, p < 0.001; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0332941#pone.0332941.g007" target="_blank">Fig 7</a>). …”
-
9
Annual treatment frequencies in recurrence and non-recurrence groups.
Published 2025“…These significantly decreased to 2.3 ± 2.6, 0.1 ± 0.3, 0.8 ± 1.6, 0.0, and 3.1 ± 2.8 in the first year; 2.1 ± 2.8, 0.4 ± 1.0, 0, 0.1 ± 0.3, and 2.6 ± 2.8 in the second year; and 2.0 ± 2.2, 0, 0.6 ± 1.7, 0.1 ± 0.3, and 2.8 ± 3.5 in the third year (Kruskal–Wallis test, p < 0.001; Dunn’s test, *P < 0.05, **P < 0.01). …”
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
Candidates from the RF method. The top 25 random forest candidates ranked by mean decrease in accuracy and mean decrease in Gini Index are in the first and second columns, respectively....
Published 2025“…The top 25 random forest candidates ranked by mean decrease in accuracy and mean decrease in Gini Index are in the first and second columns, respectively. …”
-
18
-
19
The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER.
Published 2025“…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
-
20
BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers.
Published 2024“…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. …”