Showing 1 - 20 results of 804 for search '(( third ((((larger decrease) OR (_ decrease))) OR (nn decrease)) ) OR ( shows mae decrease ))', query time: 0.36s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  18. 18

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  19. 19

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  20. 20

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”