Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
26 decrease » 026 decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ 26 » _ 2 (Expand Search), _ 6 (Expand Search), _ 24 (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
26 decrease » 026 decrease (Expand Search), _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ 26 » _ 2 (Expand Search), _ 6 (Expand Search), _ 24 (Expand Search)
-
1
-
2
-
3
-
4
Mutations in <i>rbm-26</i> cause axon degeneration and axon overlap defects.
Published 2024Subjects: -
5
-
6
-
7
-
8
Annual treatment frequencies in recurrence and non-recurrence groups.
Published 2025“…These significantly decreased to 2.3 ± 2.6, 0.1 ± 0.3, 0.8 ± 1.6, 0.0, and 3.1 ± 2.8 in the first year; 2.1 ± 2.8, 0.4 ± 1.0, 0, 0.1 ± 0.3, and 2.6 ± 2.8 in the second year; and 2.0 ± 2.2, 0, 0.6 ± 1.7, 0.1 ± 0.3, and 2.8 ± 3.5 in the third year (Kruskal–Wallis test, p < 0.001; Dunn’s test, *P < 0.05, **P < 0.01). …”
-
9
Annual number of outpatient visits in all eyes.
Published 2025“…<p>Mean visit frequency (mean ± standard deviation) significantly decreased from 11.5 ± 4.3 preoperatively to 8.8 ± 4.1, 5.0 ± 3.4, and 4.4 ± 3.2 visits in the first, second, and third postoperative years, respectively (Kruskal–Wallis test, P < 0.001; Dunn’s test, **P < 0.01). …”
-
10
Time course of central retinal thickness (CRT) in recurrence and non-recurrence groups.
Published 2025“…These values significantly decreased in the first postoperative year to 2.3 ± 2.6, 0.1 ± 0.3, 0.8 ± 1.6, 0, and 3.1 ± 2.8; in the second year to 2.1 ± 2.8, 0.4 ± 1.0, 0.0, 0.1 ± 0.3, and 2.6 ± 2.8; and in the third year to 2.0 ± 2.2, 0, 0.6 ± 1.7, 0.1 ± 0.3, and 2.8 ± 3.5 (Kruskal–Wallis test, p < 0.001; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0332941#pone.0332941.g007" target="_blank">Fig 7</a>). …”
-
11
Annual treatment frequencies in all eyes.
Published 2025“…<p>The number of anti-VEGF treatments, STTA, MA-PC, PPV, and total treatments (mean ± SD) significantly decreased from 2.6 ± 1.6, 0.3 ± 0.8, 0.6 ± 0.8, 0.1 ± 0.3, and 3.7 ± 1.7 preoperatively to 0.8 ± 1.9, 0.0 ± 0.2, 0.3 ± 1.0, 0.0, and 1.2 ± 2.2; at year 2 to 0.7 ± 2.0, 0.1 ± 0.6, 0.0 ± 0.2, 0.0 ± 0.2, and 1.0 ± 2.1; and at year 3 to 0.9 ± 2.2, 0.0, 0.2 ± 1.0, 0.0 ± 0.2, and 1.1 ± 3.1 (Kruskal–Wallis test, P < 0.001; Dunn’s test, **P < 0.01). …”
-
12
-
13
-
14
-
15
-
16
Basis spread regression results – Soybeans.
Published 2025“…It uses basis spread data from nearly 5,000 U.S. midwestern corn and soybean elevators spanning from 2012 to 2020, along with natural disaster declarations to represent weather extremes affecting crop transportation. Using a three-step process, it calculates least cost transportation routes to a port, adjusts for weather disruptions, and integrates disaster, transportation cost, and control variables into a fixed effects, panel data model that explains variation in basis spread. …”
-
17
Basis spread regression results – Corn.
Published 2025“…It uses basis spread data from nearly 5,000 U.S. midwestern corn and soybean elevators spanning from 2012 to 2020, along with natural disaster declarations to represent weather extremes affecting crop transportation. Using a three-step process, it calculates least cost transportation routes to a port, adjusts for weather disruptions, and integrates disaster, transportation cost, and control variables into a fixed effects, panel data model that explains variation in basis spread. …”
-
18
-
19
-
20