Showing 41 - 60 results of 934 for search '(( third ((set decrease) OR (a decrease)) ) OR ( via ((greater decrease) OR (linear decrease)) ))', query time: 0.39s Refine Results
  1. 41
  2. 42
  3. 43
  4. 44

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  5. 45

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  6. 46

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  7. 47

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  8. 48

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  9. 49

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  10. 50

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  11. 51

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  12. 52

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  13. 53
  14. 54
  15. 55
  16. 56
  17. 57
  18. 58

    Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy by Yanchao Zhao (5129174)

    Published 2025
    “…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
  19. 59

    Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy by Yanchao Zhao (5129174)

    Published 2025
    “…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
  20. 60