Search alternatives:
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
set decrease » step decrease (Expand Search), we decrease (Expand Search), sizes decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
set decrease » step decrease (Expand Search), we decrease (Expand Search), sizes decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
321
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
322
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
323
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
324
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
325
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
326
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
327
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
328
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
329
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
330
-
331
Flow chart for inclusion and exclusion criteria.
Published 2025“…Conversely, the likelihood of wasting decreased in children breastfeeding in their second and third year of life (AOR: 0.75; 95% CI 0.67, 0.83) and (AOR: 0.50; 95% CI 0.43, 0.60) respectively. …”
-
332
Secondary and tertiary outcomes.
Published 2024“…Study interventions will be carried out using equipment supported by Meditech International Incorporated (approved by Health Canada for pain relief). Patients will receive a maximum of 5 post-surgical treatment sessions of active PBMT (intervention: LED therapy: DUO 240 [red at 660nm and near-infrared at 840nm] applied parallel to the abdominal incision scar, followed by BIOFLEX LDR-100 laser probe (660nm red light) and the LD1-200 laser probe (825nm near-infrared light), applied at the incision wound edges) or non-effective doses of LED array and laser therapy (placebo), 4–6 hrs post-CS, and at 8am and 7pm of postoperative days 1 and 2. …”
-
333
CONSORT flow diagram.
Published 2024“…Study interventions will be carried out using equipment supported by Meditech International Incorporated (approved by Health Canada for pain relief). Patients will receive a maximum of 5 post-surgical treatment sessions of active PBMT (intervention: LED therapy: DUO 240 [red at 660nm and near-infrared at 840nm] applied parallel to the abdominal incision scar, followed by BIOFLEX LDR-100 laser probe (660nm red light) and the LD1-200 laser probe (825nm near-infrared light), applied at the incision wound edges) or non-effective doses of LED array and laser therapy (placebo), 4–6 hrs post-CS, and at 8am and 7pm of postoperative days 1 and 2. …”
-
334
-
335
-
336
-
337
-
338
-
339
-
340