Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
-
152
-
153
-
154
General characteristics of study subjects.
Published 2025“…COVID-19 did not affect inpatient mortality (p = 0.9608), but in-hospital mortality decreased from 12% to 7% in the medical aid group.</p><p>Conclusion</p><p>Overall, we found that COVID-19 had an impact on admission rates of patients with AMI but did not have a significant impact on in-hospital mortality. …”
-
155
-
156
Importance of random forest model.
Published 2025“…The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. …”
-
157
Schematic of the Baidu SVI collection.
Published 2025“…The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. …”
-
158
Map of the study area.
Published 2025“…The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. …”
-
159
Research framework.
Published 2025“…The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. …”
-
160
Perception type distribution and typical images.
Published 2025“…The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. …”