Showing 1 - 20 results of 48 for search '(( three ((gnns decrease) OR (nn decrease)) ) OR ( ai ((larger decrease) OR (marked decrease)) ))', query time: 0.48s Refine Results
  1. 1
  2. 2
  3. 3

    A novel RNN architecture to improve the precision of ship trajectory predictions by Martha Dais Ferreira (18704596)

    Published 2025
    “…To solve these challenges, Recurrent Neural Network (RNN) models have been applied to STP to allow scalability for large data sets and to capture larger regions or anomalous vessels behavior. This research proposes a new RNN architecture that decreases the prediction error up to 50% for cargo vessels when compared to the OU model. …”
  4. 4
  5. 5

    Expanding Three-Coordinate Gold(I) Anticancer Agent Chemical Space by Charles E. Greif (21728091)

    Published 2025
    “…Complex <b>2e</b> shows high potency in vitro and decreases 3D-breast cancer mammosphere viability. Mechanistic studies show <b>2e</b> promotes cell death by apoptosis with plausible mode of action via endoplasmic reticulum stress induction. …”
  6. 6

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  7. 7

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  8. 8

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  9. 9

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  10. 10

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  11. 11

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  12. 12

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  13. 13

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  14. 14

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  15. 15

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  16. 16

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  17. 17

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  18. 18

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  19. 19

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
  20. 20

    Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces by Guangchao Han (1453198)

    Published 2025
    “…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”