Showing 1 - 20 results of 5,212 for search '(( three ((main decrease) OR (point decrease)) ) OR ( i ((larger decrease) OR (marked decrease)) ))', query time: 0.79s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  7. 7

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  8. 8

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  9. 9

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  10. 10

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  11. 11

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  12. 12

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  13. 13
  14. 14

    Three classic combustion stages of the flame. by Lei Bai (631944)

    Published 2025
    “…This research provides theoretical support for vehicle fire risk assessment and prevention. The main findings of this study are as follows: (1) As the temperature of the hot surface increases, the ignition delay time generally shows a decreasing trend, with 450°C being a critical turning point; (2) There is an overlap between ignition and non-ignition cases within a specific range, forming a possible ignition zone, and the <i>R</i>² values of the fitting equations for the upper and lower boundaries are both above 95%, indicating a good fit. (3) The fractal dimension can effectively quantify the geometric complexity of the flame’s outer contour, thereby characterizing the stability of the flame’s combustion. …”
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20