بدائل البحث:
marked decrease » marked increase (توسيع البحث)
large decrease » larger decrease (توسيع البحث), large increases (توسيع البحث), large degree (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
three nn » three gnns (توسيع البحث), three new (توسيع البحث), three _ (توسيع البحث)
marked decrease » marked increase (توسيع البحث)
large decrease » larger decrease (توسيع البحث), large increases (توسيع البحث), large degree (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
three nn » three gnns (توسيع البحث), three new (توسيع البحث), three _ (توسيع البحث)
-
1
-
2
Data Sheet 1_Emotional prompting amplifies disinformation generation in AI large language models.docx
منشور في 2025"…Introduction<p>The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. …"
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Expanding Three-Coordinate Gold(I) Anticancer Agent Chemical Space
منشور في 2025"…Complex <b>2e</b> shows high potency in vitro and decreases 3D-breast cancer mammosphere viability. Mechanistic studies show <b>2e</b> promotes cell death by apoptosis with plausible mode of action via endoplasmic reticulum stress induction. …"
-
12
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
13
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
14
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
15
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
16
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
17
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
18
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
19
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"
-
20
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …"